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Carbometalation of alkynes generates cis-substituted alkenyl-
metals and is one of the most useful reactions for stereoselective 2 N
olefin synthesis, since the resulting alkenylmetals can be trans-
formed further to variously substituted ethyledetn particular, R'
carbocupratiof zirconium-catalyzed carboaluminatfceand nickel- \\ //
catalyzed carbozincatiéhave high synthetic potential due to wide __jSnBu, . BusSn,
applicability. Although alkenylstannanes are useful synthetic /2R
precursors for various olefinic targétsno report has been
published on the transition-metal-catalyzed carbostannylation of
alkynes‘?’g Here, we report the palladium-catalyzed carbostan- Taple 1. Carbostannylation of Alkynes Catalyzed by

nylation of alkynes using alkynylstannanes. Iminophosphine Y)—Palladiuni
We have already reported that tributyl(phenylethynyl)fa)( temp time yield
adds oxidatively to a palladium(0) complex coordinated\B{2- entry R R2 R3 (°C) (h) (%) prod(s) 5/6°
(diphenylphosphino)benzylidene)-2-phenylethylamit)yeafid that 1 Ph g3 H H (@3’ 50 2 8l 5a
the resulting oxidative adducs)is involved in the catalytic cycle 2 Ph Qa COEt H @b 50 3 78 5b6b 20/80
of the palladium-catalyzed coupling &fa with aryl iodides 3 Ph Qa) COjEt Me (4ge 90 90 57 5c 6C 1/>99
(Scheme 1. We envisaged that palladium compl8xshould 4 Ph @a) Ac H (4 50 4 76 5d,6d 15/85
react with alkynes to give carbostannylation products. Thisturned 5 Ph @a Ph H @g 50 21 8l Se6e 92/8
out to be the case. 6 Ph Qa) 4-CHCeHs H (4) 50 44 82 5f6f  91/9
. . 7 Ph @a) EtO H @9 50 5 52 5g6g >99/1
Treatment o2a with a 1:2 mixture of [PdCb@'CsHs)]z_l (5 8 Bu (2b) H H (4a¢ 50 4 66 5h
mol % of Pd) under an acetylene atmosphere (1 atm) in THF at 9 Bu (2b) CO.Et H (@4b) 50 16 72 5i,6i 12/88
50 °C for 2 h gave tributyl[Z)-2-(phenylethynyl)ethenyl]tin5@)'° 10 Bu @b) Ph H @¢ 50 29 80 5,6 92/8

in 8.1.% yield' as a single |somer_through an e>_<c|u3|ve syn- aThe reaction was carried out in THF (5 mL) using an alkynylstan-
addition (Scheme 2). The use of triphenylphosphine (2 equiv t0 nane (0.459 mmol) and an alkyne (1.38 mmol) in the presence of
palladium) in place ol gave only 48% yield obain a prolonged  iminophosphinel (0.022 mmol) and [PdCi-CzHs)]» (0.011 mmol).
period (43 h). A Pd(0)1,3-bis(diphenylphosphino)propane "lsolated yield based on the alkynylstannane is givédetermined
by H or 12%Sn NMR. 9 The reaction was carried out under an acetylene
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(a) 4-O,NCgH,I (0.92 equiv), Pd,(dba)s, (2-furyl);P (5 mol %
of Pd, Pd/(2-furyl);P = 1/4), toluene, 90 °C, 13 h, 85% (based
on 4-O,NC¢H,I). (b) I, (1.4 equiv), THF, 0 °C, 40 min, 91%.
(c) conc. HCI, THF, rt, 1 h, 82%.

The catalytic cycle should first involve the oxidative addition
of an alkynylstannane to the Pd(0) complex as discussed before.
Successive insertion of an alkyne to the-Rd bond (carbopal-
ladation}® of 3 followed by reductive elimination is likely to
afford the carbostannylation product and regenerate the Pd(0)
complex (Scheme 3). The opposite regioselectivity observed in
use of arylacetylenes and alkynes having a carbonyl group can

—cR!
,C=CR

Communications to the Editor

SnBu,

2
BU3 R‘ R1 gu:; P
R ,Sn n
( \Pd;—/ <= \—-z)d’ )
d AY
N = — N
2
R 8a coy 8b

R __coy

Electronic Demand
(Michael Fashion)

Steric Demand <<

R?

coy

4b—d

R%=H, Me
Y = OEt, Me

\SnBug

be explained by the followings. In the cases of arylacetylenes,
carbopalladation giving alkenylpalladiums would preferto 7b

by steric reason. Accordingly, alkenylstannaBesre afforded

as main products. In contrast, electron-deficient alkyhedic,
and4d are likely to suffer the addition of the alkynyl group in a
Michael fashion givingg predominantly througib.

Finally, we confirmed the utility of the carbostannylation
products by the transformation of carbostannylation pro&act
to various compounds (Scheme 4). The-&d2-furyl)phosphine-
catalyzed couplint of 5a with 4-nitroiodobenzene gave enyne
9 in 85% vyield!®> lodolysis or hydrolysis of5a afforded the
corresponding alkenyl iodidel() or enyne (1) in good yield,
respectively.

In conclusion, we have demonstrated that the carbostannylation
of alkynes takes place with alkynylstannanes to give conjugated
(stannyl)enynes in a stereoselective manner. Studies on the details
of the mechanism as well as synthetic applications to various
unsaturated substrates and organostannanes are in progress in our
laboratories.

Supporting Information Available: Detailed experimental proce-
dures including spectroscopic and analytical data (5 pages, print/PDF).
See any current masthead page for ordering information and Web access
instructions.
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